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Abstract: Purpose: The aim of this study was to analyze the relevance of asymmetry features
between both eyes of the same patient for glaucoma screening using optical coherence tomography.
Methods: Spectral-domain optical coherence tomography was used to estimate the thickness of the
peripapillary retinal nerve fiber layer in both eyes of the patients in the study. These measurements
were collected in a dataset from healthy and glaucoma patients. Several metrics for asymmetry in
the retinal nerve fiber layer thickness between the two eyes were then proposed. These metrics
were evaluated using the dataset by performing a statistical analysis to assess their significance as
relevant features in the diagnosis of glaucoma. Finally, the usefulness of these asymmetry features
was demonstrated by designing supervised machine learning models that can be used for the early
diagnosis of glaucoma. Results: Machine learning models were designed and optimized, specifically
decision trees, based on the values of proposed asymmetry metrics. The use of these models on the
dataset provided good classification of the patients (accuracy 88%, sensitivity 70%, specificity 93%
and precision 75%). Conclusions: The obtained machine learning models based on retinal nerve
fiber layer asymmetry are simple but effective methods which offer a good trade-off in classification
of patients and simplicity. The fast binary classification relies on a few asymmetry values of the retinal
nerve fiber layer thickness, allowing their use in the daily clinical practice for glaucoma screening.

Keywords: optical coherence tomography (OCT); peripapillary OCT; retinal nerve fiber layer (RNFL);
RNFL thickness asymmetry; retinal imaging analysis; glaucoma; decision trees

1. Introduction

Glaucoma is an eye disease which damages the optic nerve head (ONH) and can
produce complete loss of vision. After cataracts, it is the leading cause of irreversible
blindness worldwide [1]. In 2013 there were 64.3 million people aged 40–80 with glaucoma
worldwide, and this number is estimated to increase to 111.8 million in 2040 [2]. The term
glaucoma describes ocular disorders with multi-factorial etiology which usually are united
with clinical intraocular-pressure-associated optic neuropathy. There are different types of
glaucoma, classically divided into the categories of primary or secondary open-angle or
angle-closure glaucoma [3]. Primary open-angle glaucoma (POAG) is the most common
form of glaucoma, where the drainage angle formed by the cornea and iris remains open,
but the trabecular meshwork is partially blocked, causing an increase in the intraocular
pressure (IOP) [4]. Secondary forms of glaucoma are caused by various ocular or systemic
diseases; most of them are associated with high IOP, but not all, such as normal-tension
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glaucoma [5]. Primary open-angle glaucoma is usually associated with an increase in
the intraocular pressure which modifies the appearance of the optic nerve, causing the
neuroretinal rim of the optic nerve to become progressively thinner, thereby enlarging
the optic-nerve cup. The different types of glaucoma have in common a slow progressive
degeneration of retinal ganglion cells and their axons, resulting in a distinct appearance of
the optic disc and a concomitant pattern of visual loss [6]. Patients with glaucoma typically
lose peripheral vision and may lose all vision if not treated properly [7].

Glaucoma is a silent and progressive illness which is initially asymptomatic. The
diagnosis is based on tonometry to assess the intraocular pressure, campimetry to evaluate
the visual field, and imaging modalities to analyze the morphology of the ONH and its
retinal layers. The internal structure of the eye can be imaged by retinal fundus images and
optical coherence tomography [8].

Optical coherence tomography (OCT) is an imaging modality used in the assessment
of the glaucomatous damage [9]. The OCT provides images with backscatter produced
by the differences in the refractive index between adjacent retinal tissues [10,11]. The
initial time-domain (TD)-OCT was surpassed by spectral domain (SD)-OCT, which offers
increased axial resolution and faster scanning speeds [12]. SD-OCT allows one to analyze
and quantify eye parameters, such as the thickness of the peripapillary XXXXX retinal
nerve fiber layer (RNFL) for monitoring glaucoma [13,14], and evaluate neurostructural
and vascular changes (see, e.g., [15]).

The damage produced by glaucoma alters the morphology of ocular structures, such
as the RNFL and ONH, which allows for discrimination between glaucomic and healthy
eyes. Those structural changes in the ONH or the thinning of the RNFL result in differences
between the eyes of the same individual. For this reason, asymmetry has been analyzed
and considered as an early indicator of glaucoma [16] using, e.g., the difference in values of
intraocular pressure [17], central corneal thickness [18], corneal hysteresis [19], neuroretinal
rim width [20] or as in this work, RNFL thickness [21]. While some studies determine
the limits of the normal interocular asymmetry in retinal layers considering thickness
measurements with OCT in normal subjects (see, e.g., [22–24]), other studies use RNFL
thickness measurements to evaluate the diagnostic capabilities of intereye and intraeye dif-
ferences to identify early primary open-angle glaucoma [25] or propose an early glaucoma
discriminator index [26].

In this work, we focus on primary open-angle glaucoma and propose a set of asym-
metry metrics based on the thickness of the RNFL of both eyes. Statistical analysis was
performed to quantify the importance of each metric as a relevant characteristic for glau-
coma diagnosis. A simple classifier was then applied to the most discriminant metric,
obtaining a decision tree for the classification of healthy and glaucoma patients. This model
offers a simple but effective tool for the screening and early detection of glaucoma that
can be used in the daily clinical practice, similarly to the inferior-superior-nasal-temporal
(ISNT) rule [27], the cup-to-disc ratio (CDR) [28] and the rim-to-disc ratio (RDR) [29] mea-
surements. Note that these previous indicators are obtained from retinal fundus images,
instead of OCT, which is one of the novelties of this work.

After this introduction, the rest of the article is organized as follows: Section 2 pro-
vides all the details of the dataset used and the proposed metric to evaluate the asymmetry.
Section 3 shows the statistical analysis of the asymmetry metrics and describes the clas-
sification models, along with the metrics providing the greatest discrimination between
healthy and glaucoma patients. Finally, Section 4 closes the article with a discussion and
the conclusions.

2. Materials and Methods

This section describes the image acquisition procedure and the methods used in the
assessment of the diagnosis of the disease.
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2.1. Image Acquisition Procedure

We took a set of 2D peripapillary B-scan optical coherence tomography (OCT) images
centered at the optic nerve head as raw material, from both healthy individuals and un-
healthy patients with glaucoma. The OCT image dataset used in this work was acquired
by the Ophthalmology Service of the Hospital General Universitario Reina Sofía (HGURS,
Murcia, Spain) using a Spectralis OCT S2610-CB (Heidelberg Engineering GmbH, Heidel-
berg, Germany) from October 2018 to November 2020 from 287 individuals. These images
were anonymized according to the criteria of the Human Ethics Committee.

The patients included in the study were divided into two groups. In the first group,
G1, patients diagnosed with simple chronic glaucoma recruited in the Glaucoma Section
of the HGURS; in the second group, G2, were primary care patients without any type of
ocular pathology (verified by ophthalmologists) that could influence the morphology of the
optic nerve. An exclusion criterion was the presence of opacities in the transparent media
(corneal alterations and advanced cataracts) that prevented obtaining an assessable OCT.
Another reason for excluding a patient was that the alteration in the confidence indices of
the visual field persisted in two consecutive tests. The patients of G2 had IOP equal to or
below 22 mmHg, and no lesions suggestive of glaucomatous neuropathy were detected.
The sample size of patients was calculated by taking into account the population of Area VII
of the city of Murcia and the prevalence of simple chronic glaucoma (3.5% in the population
older than 40 years), while applying a confidence level of 95% and a 3% margin of error.

The spectral-domain optical coherence tomography (SD-OCT), also called Fourier-
domain OCT (FD-OCT), was acquired by means of an 870 nm wavelength super-luminescent
diode (SLD), scanning a cylindrical section of the retinal layers centered on the optic disc.
This cylindrical section, also called a B-scan, was projected from polar to Cartesian coordi-
nates resulting in a image with a resolution of 768 × 496 pixels, a bit depth of 8 bits/pixel
in grayscale and a z-scaling of 3.87 µm/pixel, as illustrated in Figure 1. In order to facilitate
the analysis, the cylindrical B-scan is normally divided into a group of 6 sectors whose
names refer to their positions, namely, temporal (T), temporal superior (TS), nasal superior
(NS), nasal (N), nasal inferior (NI) and temporal inferior (TI). Note that sectors (T) and (N)
use an angle of 90◦, whereas the rest of sectors use an angle of 45◦. As shown in Figure 2,
the naming of the sectors is symmetrical with respect to the right and left eyes. Thus,
the analysis of the asymmetry can be performed by simple comparison of the thickness
measurements between each paired eye sector. The relations between polar coordinates
measured in degrees and Cartesian coordinates measured in pixels is provided in Table 1
and outlined at the bottom of Figure 1.

Figure 1. Segmented RNFL in a peripapillary B-scan OCT image. Relations of the sectors (T, TS, NS,
N, NI and TI) measured in degrees and pixels.



Sensors 2022, 22, 4842 4 of 17

Figure 2. Diagram of the situation of the sectors of the eye in relation to the face of the subject.

Table 1. Relations between the polar and Cartesian coordinates in the OCT projection.

Temporal
(T)

Temporal
Sup. (TS)

Nasal Sup.
(NS)

Nasal
(N)

Nasal Inf.
(NI)

Temporal
Inf. (TI)

Temporal
(T)

Polar Min 0◦ 45◦ 90◦ 135◦ 225◦ 270◦ 315◦

(degrees) Max 45◦ 90◦ 135◦ 225◦ 270◦ 315◦ 360◦

Cartesian Min 1 97 193 289 481 577 673
(pixels) Max 96 192 288 480 576 672 768

As described in [30], expert ophthalmologists diagnosed both eyes of all individuals
in the database using three possible levels of glaucoma disease: healthy, not healthy and
uncertain. Given the aim of this work to compare the asymmetry between the eyes of
healthy and glaucoma patients, only individuals with two healthy eyes (160 individuals)
and with both eyes with glaucoma disease (47 individuals) were selected (see Table 2).
Hence, patients with only one eye diagnosed with glaucoma or those for whom the expert
diagnosis was inconclusive were not considered.

Note that the sizes of the two groups are not comparable; i.e., the number of healthy
individuals was larger than the number of unhealthy ones. This may suggest biased results
in a subsequent classification process. Nevertheless, it is important to highlight that the
individuals in the database were collected directly from patients attending the HGURS
ophthalmology service; thus, the distribution of the two sample groups is similar to what
can be found in a real clinical setting for glaucoma diagnosis.

Table 2. Summary of the OCT dataset used to evaluate the asymmetry metrics.

Healthy (h) Glaucoma (g) Total

Age (years) 59.10± 12.70 70.15± 9.21 61.61± 12.85

Gender (male/female) 53/107 19/28 72/135

Total 160 patients 47 patients 207 patients
(320 OCTs) (94 OCTs) (414 OCTs)

2.2. RNFL Segmentation and Thickness Calculation

The next step is devoted to the segmentation of the images in order to estimate the
thickness of the retinal nerve fiber layer (RNFL). The segmentation of the RNFL under anal-
ysis poses a great challenge due to the characteristics of the images, and more specifically,
the features of the retinal layer under analysis. As described in [9,10], speckle noise, a low
level of contrast and irregularly shaped morphological features are frequently present in
OCT datasets. In addition, since the RNFL is the innermost layer of the retina, artifacts due
to the shadowing effect of the retinal veins appear in the images, increasing the difficulty
of precisely defining the layers in specific sectors of the eye. The most commonly used
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approaches for this segmentation are comprehensively reviewed in [30], and some of them
are relevant to the dataset used here.

The segmentation method chosen for this work is the algorithm provided by Spectralis
software version 6.9.4.0. The thickness of the RNFL is calculated from the positions of
the upper and lower boundary of the RNFL provided by the segmentation algorithm,
scaled from pixels to µm according to the OCT resolution, as shown in Figure 3. Unlike
other methods where the thickness value at each angle of the B-scan can be obtained, the
Spectralis device provides only the average thickness of the RNFL for each sector of the
eye (T, TS, NS, N, NI and TI) and the thickness average value of the global circumpapillary
contour (G). Therefore, these mean section thickness values were used for the inter-eye
asymmetry study (Section 3).

Figure 3. Screenshot of Spectralis. From left to right and top to bottom: Retinal fundus image
centered on the optic disc (the green circle indicates the location of the peripapillary B-scan, which is
shown on the right with the segmentation of the RNFL); 2D peripapillary B-scan OCT with Cartesian
coordinates; estimated mean values for RNFL layer thickness for each sector and the overall mean;
rectified outline of the RNFL with estimated thickness and reference values according to the database
European Descent (2009).

2.3. Proposals for Asymmetry Metrics

In this section, a set of inter-eye asymmetry measures of RNFL thickness are proposed.
The difference between the mean value of the RNFL thickness in the right eye and its
corresponding thickness in the left eye is the base operation for all measures. Some
metrics calculate absolute differences, in order to analyze only the difference between
eyes by isolating the effect of which particular eye shows greater thickness. Nevertheless,
the influence of the sign of the difference in the RNFL thickness on the discrimination
between healthy patients and glaucoma patients has also been explored with other metrics.
Additionally, given that the thickness of the retinal layers varies between individuals, a
set of normalizers have been proposed to provide relative asymmetry values, with the
objective of decoupling to some extent the specific dimensions of the eyes of the patients.
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The first attempt to measure the asymmetry was with the following difference

δS,i = wr
S,i − wl

S,i, (1)

where S denotes the specific sector (T, TS, NS, N, NI, TI or G) over which the asymmetry is
calculated; i indicates the patient number; and wr

S,i and wl
S,i refer to the mean thickness of

the RNFL layer in the sector S calculated for the right and left eyes of patient i, respectively.
By applying the modulus to the previous equation, the direction in which the subtraction is
calculated becomes irrelevant. Thus, the following measure is obtained:

|δS,i| = |wr
S,i − wl

S,i|. (2)

The following proposals for the measurement of the asymmetry normalize previous
measures with the sum of the RNFL thickness of both eyes in the corresponding sector S of
the patient i:

∆S,i =
δS,i

wr
S,i + wl

S,i
=

wr
S,i − wl

S,i

wr
S,i + wl

S,i
, (3)

and

|∆S,i| =
|wr

S,i − wl
S,i|

wr
S,i + wl

S,i
. (4)

The normalization can also be performed with the average thickness in each sector of
all the patients in the dataset:

∆̄S,i =
δS,i

wr
S + wl

S
=

wr
S,i − wl

S,i

wr
S + wl

S
, (5)

and

|∆̄S,i| =
|wr

S,i − wl
S,i|

wr
S + wl

S
, (6)

where the values wr
S and wl

S can be obtained as

wr
S =

1
N

N

∑
i=1

wr
S,i, (7)

and

wl
S =

1
N

N

∑
i=1

wl
S,i, (8)

i.e., the mean value of the RNFL thickness for each sector of both eyes. The values obtained
with the dataset of OCTs used in this work (N = 160 + 47 = 207) are gathered in Table 3.

Finally, the last proposed normalizations divide the thickness difference by the sum of
the average thickness of the complete RNFL in both eyes of patient i:

¯̄∆S,i =
δS,i

wr
G,i + wl

G,i
=

wr
S,i − wl

S,i

wr
G,i + wl

G,i
, (9)

and

| ¯̄∆S,i| =
|wr

S,i − wl
S,i|

wr
G,i + wl

G,i
, (10)

where wr
G,i and wl

G,i are, respectively, the average thickness of the complete RNFL in the
right eye and in the left eye of patient i.
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Table 3. Mean values in µm of the RNFL thickness calculated for all sectors in both eyes. Values used
in asymmetry metrics ∆̄S,i and |∆̄S,i|.

TS T TI NS N NI G

Right wr
TS wr

T wr
TI wr

NS wr
N wr

NI wr
G

128.1691 68.7826 130.0773 101.2029 74.1932 106.1353 93.9469

Left wl
TS wl

T wl
TI wl

NS wl
N wl

NI wl
G

126.3527 68.0531 132.8454 109.5266 70.9469 106.6957 93.9710

3. Results

This section firstly addresses the statistical characterization of the RNFL thickness
values using all previous asymmetry metrics. The mean, standard deviation and p-value
were calculated for the subsets of healthy and glaucoma patients. Next, the chosen machine
learning models, decision trees, are briefly described, and the design process for glaucoma
screening is detailed.

3.1. Statistical Characterization of the Asymmetry Metrics

The thickness asymmetry has been calculated with the proposed metrics for each
sector of the OCT and for the overall RNFL, considering two subsets, healthy and glaucoma
patients (see Table 2). In order to analyze the relevance of each asymmetry metric, statistical
characterization has been performed. Table 4 gathers the mean value, standard deviation
and p-value of each metric for all sectors (TS, T, TI, NS, N and NI) and for entire OCT scan
(G) for the two subsets of healthy and glaucoma patients. The values of the non-normalized
metrics δS and |δS| are given in µm, whereas the values of the normalized metrics are
dimensionless and range from −1 to 1 in the case of ∆S, ∆̄S and ¯̄∆S, and from 0 up to 1 in
the case of the metrics based on the absolute value, i.e., |∆S|, |∆̄S| and | ¯̄∆S|.

As can be seen in Table 4, the metrics not using absolute value (δS, ∆S, ∆̄S and ¯̄∆S)
have mean values centered at zero and standard deviations lower in the group of healthy
individuals than in the group of glaucoma patients. According to the definitions of these
asymmetry metrics δS, ∆S, ∆̄S and ¯̄∆S, the statistical distributions of such asymmetry values
will have be normal when the number of patients is high enough, due to the central limit
theorem. The means of these normal distributions will always be approximately zero,
considering that the direction in which the subtraction is calculated has been arbitrarily
chosen, and the asymmetry must occur equiprobably in both directions (from the left eye
to the right, or vice versa). Then, since the values follow a normal distribution with a zero
mean, the variance of the distributions will be the distinguishing factor in the screening of
healthy and glaucoma patients.

On the other hand, metrics based on the absolute value (|δS|, |∆S|, |∆̄S| and | ¯̄∆S|) have
mean values greater than zero and standard deviations for the glaucoma subset slightly
higher than for the subset of healthy patients. The absolute values of the asymmetry
metrics cause normal distributions to become half-normal distributions [31]. The mean of
the half-normal distribution is

µ = σ

√
2
π

, (11)

where σ is the standard deviation of the initial normal distribution. That is, the mean of the
new half-normal distribution is determined, proportionally, by the variance of the initial
normal distribution, allowing the use of thresholds for the discrimination of healthy and
glaucoma patients. Note that a greater variance will imply a higher mean value after taking
the absolute value of the asymmetry for a specific sector.

The third characteristic gathered in Table 4 is the p-value, which determines the
statistical significance of the hypothesis that the asymmetry of the RNFL thickness is
statistically related to the occurrence of glaucoma disease. Then, a low p-value indicates
that the asymmetry metric in a given sector has sufficient statistical significance in the
occurrence of glaucoma between the healthy and glaucoma subset of patients. Taking
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this into account, since the p-values of the metrics |∆S| and | ¯̄∆S| are the smallest of all the
proposed metrics, |∆S| and | ¯̄∆S| are the most useful and relevant as discriminant variables
in patient classification.

Table 4. Statistical characterization of the asymmetry metrics proposed for RNFL thickness. Mean
value, standard deviation and p-value of each metric for the two subsets of healthy and glau-
coma patients.

Sector
δS |δS|

Healthy Glaucoma p-Value Healthy Glaucoma p-Value

TS 2.7563± 16.8122 −1.3830± 45.3539 5.0247× 10−1 12.7438± 11.2637 34.1489± 29.4522 6.1489× 10−6

T 2.1500± 9.6793 −4.1064± 20.1022 3.3495× 10−2 7.0125± 6.9896 15.2979± 13.4987 2.6754× 10−4

TI −2.3375± 14.9220 −4.2340± 51.8594 7.0975× 10−1 11.7500± 9.4463 40.0213± 32.7291 1.0413× 10−6

NS −7.5938± 16.6878 −10.8085± 34.9370 8.4612× 10−1 14.3938± 11.3149 27.8298± 23.4227 4.0740× 10−3

N 4.2875± 12.5123 −0.2979± 26.0576 2.9617× 10−1 10.0000± 8.6271 17.3617± 19.2641 2.2671× 10−2

NI −1.0625± 16.5372 1.1489± 34.5989 3.6061× 10−1 12.8125± 10.4606 26.7660± 21.5973 5.7953× 10−5

G 0.6563± 6.5895 −2.3404± 25.8728 5.5860× 10−1 4.2188± 5.0937 20.6383± 15.4855 4.5656× 10−9

Sector
∆S |∆S|

Healthy Glaucoma p-Value Healthy Glaucoma p-Value

TS 0.0099± 0.0619 −0.0040± 0.2357 6.4483× 10−1 0.0470± 0.0413 0.1824± 0.1469 6.7965× 10−8

T 0.0142± 0.0647 −0.0361± 0.2235 1.0267× 10−1 0.0481± 0.0453 0.1465± 0.1714 3.9634× 10−4

TI −0.0075± 0.0531 −0.0170± 0.3159 7.7715× 10−1 0.0416± 0.0338 0.2396± 0.2036 4.9500× 10−8

NS −0.0359± 0.0798 −0.0494± 0.2155 8.8592× 10−1 0.0666± 0.0566 0.1750± 0.1329 2.9386× 10−5

N 0.0300± 0.0876 0.0069± 0.1854 4.8085× 10−1 0.0674± 0.0634 0.1386± 0.1217 4.8106× 10−4

NI −0.0052± 0.0772 0.0058± 0.2342 4.9736× 10−1 0.0582± 0.0508 0.1779± 0.1502 1.8119× 10−6

G 0.0033± 0.0346 −0.0162± 0.1804 5.4845× 10−1 0.0214± 0.0272 0.1428± 0.1094 9.2247× 10−10

Sector
∆̄S |∆̄S|

Healthy Glaucoma p-Value Healthy Glaucoma p-Value

TS 0.0108± 0.0661 −0.0054± 0.1782 5.0240× 10−1 0.0501± 0.0443 0.1342± 0.1157 6.1539× 10−6

T 0.0157± 0.0707 −0.0300± 0.1469 3.3450× 10−2 0.0512± 0.0511 0.1118± 0.0986 2.6933× 10−4

TI −0.0089± 0.0568 −0.0161± 0.1972 7.0988× 10−1 0.0447± 0.0359 0.1522± 0.1245 1.0371× 10−6

NS −0.0360± 0.0792 −0.0513± 0.1658 8.4615× 10−1 0.0683± 0.0537 0.1321± 0.1112 4.0816× 10−3

N 0.0295± 0.0862 −0.0021± 0.1795 2.9689× 10−1 0.0689± 0.0594 0.1196± 0.1327 2.2772× 10−2

NI −0.0050± 0.0777 0.0054± 0.1626 3.6026× 10−1 0.0602± 0.0491 0.1258± 0.1015 5.7538× 10−5

G 0.0035± 0.0351 −0.0125± 0.1377 5.5856× 10−1 0.0224± 0.0271 0.1098± 0.0824 4.5398× 10−9

Sector
¯̄∆S | ¯̄∆S|

Healthy Glaucoma p-Value Healthy Glaucoma p-Value

TS 0.0125± 0.0853 −0.0055± 0.3102 6.4002× 10−1 0.0642± 0.0574 0.2357± 0.1988 2.4408× 10−7

T 0.0108± 0.0461 −0.0281± 0.1472 6.3324× 10−2 0.0345± 0.0324 0.1081± 0.1025 1.9310× 10−5

TI −0.0107± 0.0752 −0.0356± 0.3646 5.9052× 10−1 0.0591± 0.0475 0.2817± 0.2305 6.6073× 10−8

NS −0.0391± 0.0850 −0.0737± 0.2296 4.7228× 10−1 0.0731± 0.0581 0.1900± 0.1463 2.9558× 10−5

N 0.0215± 0.0637 0.0008± 0.1630 4.3602× 10−1 0.0504± 0.0443 0.1165± 0.1127 4.8909× 10−4

NI −0.0044± 0.0844 0.0084± 0.2420 4.6913× 10−1 0.0646± 0.0543 0.1872± 0.1511 1.2741× 10−6

G 0.0033± 0.0346 −0.0162± 0.1804 5.4862× 10−1 0.0214± 0.0272 0.1428± 0.1094 9.0897× 10−10

With the aim of easing the understanding of the distribution of the values provides by
each asymmetry metric, Figure 4 shows notched box plots of the proposed RNFL thickness
asymmetry metrics for the healthy (h) and glaucoma (g) subsets of patients, depicted for
each eye sector (TS, T, TI, NS, N and NI) and for the overall global thickness value (G). For
each box, the central mark indicates the median, and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. These percentiles delimit the so-called
interquartile range. The whiskers extend to the most extreme values not considered outliers.
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Outliers are values located more than 1.5 times the interquartile range outside the upper or
lower boundary of the box. The tapered and shaded regions, called notches, display the
variability of the median between values. The width of a notch is computed so that boxes
whose notches do not overlap have different medians at the 5% significance level—i.e., the
true medians do differ with 95% confidence.

(a) Box plot of δS (b) Box plot of |δS|

(c) Box plot of ∆S (d) Box plot of |∆S|

(e) Box plot of ∆̄S (f) Box plot of |∆̄S|

Figure 4. Cont.
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(g) Box plot of ¯̄∆S (h) Box plot of | ¯̄∆S|

Figure 4. Notched box plots of the proposed RNFL thickness asymmetry metrics for the healthy (h)
and glaucoma (g) subsets of patients, depicted for each eye sector (TS, T, TI, NS, N and NI) and for
the overall global thickness value (G).

As can be seen in Figure 4, these graphs corroborate the insights concluded above.
The values of metrics δS, ∆S, ∆̄S and ¯̄∆S are distributed around zero, and there is greater
dispersion for the subset of glaucoma patients. The box plots of |δS|, |∆S|, |∆̄S| and
| ¯̄∆S| depict how the variances of the distributions not using absolute values have been
transformed into the corresponding means of the related metrics with absolute values,
according to Equation (11). In addition, it can also be seen qualitatively how the notches
with the least overlap for healthy and glaucoma patients are those corresponding to metrics
|∆S| and | ¯̄∆S|, especially in sectors TS and TI, although the distribution of asymmetry values
considering the entire layer, G, has the greater separation. As will be proven numerically
later, this fact graphically justifies the use of these metrics as the characteristics for the
design of the classifier.

3.2. Decision Trees

Artificial intelligence (AI) is increasingly being incorporated into the diagnostic process
in healthcare due to its ability to analyze data with complex artificial networks and to learn
automatically, especially through machine learning (ML) and deep learning (DL) [32,33].
In this work, instead of using complex classification methods based on machine learning to
diagnose glaucoma (see, e.g., [34–36]), we chose classification trees [37] for their simplicity,
with the aim of transferring them to daily clinical practice in glaucoma screening.

Classification tree denotes the classification and regression tree methodology (CART)
used to describe decision tree algorithms that are used for classification learning tasks. A
decision tree is a supervised machine learning algorithm with a tree-like structure which
repeatedly splits the input dataset into classes, taking into account one exploratory variable
at a time. These trees are used when the target variable is categorical and can assume only
one of two mutually exclusive values (healthy and glaucoma, in our case) [38,39].

Considering the RNFL thickness in all sectors (TS, T, TI, NS, N and NI) and the global
mean (G) of the peripapillary OCT, the proposed asymmetry metrics have been applied
to generate a vector with the features of the subsets of healthy and glaucoma patients.
With these features as input variables, a fitted binary classification decision tree has been
designed for each asymmetry metric taking into account the labeling of each class (healthy
or glaucoma patient).

The designed binary trees split branching nodes based on the values of the input
features. One of the parameters of the model is the depth of the tree, which is related to the
model complexity, and therefore, to the computational cost. The classification trees have
been developed using five folds in the cross-validation. The results of the classification trees
have been analyzed controlling the maximum depth of the trees (or maximum number
of splits), ξ. Initially, the weights of the inputs corresponding to the class healthy and to
the class glaucoma, wh and wg, respectively, were set to unity, i.e., wh = 1.0 and wg = 1.0.
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Table 5 gathers the classification loss for observations not used for training in deep decision
trees (ξ = 15) and shallower trees (ξ = 3). The largest value of ξ for deep decision
trees depends on the number of input features used, which in our case, were the seven
asymmetry measurements performed in the six sectors and in the global average of the
RNFL thickness. As can be seen, the classification loss decreases as the maximum number
of splits is reduced, providing the best values for the metrics |∆|, ¯̄∆ and | ¯̄∆|. The best
values have been highlighted in bold in Table 5, and their corresponding decision trees and
confusion matrices are shown in Figure 5. The representation of each model is a binary
tree where each root node represents a single input variable (asymmetry feature) and a
split point on that variable. The leaf nodes of the tree contain an output variable which is
used to predict if the input corresponds to a healthy or a glaucoma patient. Regarding the
confusion matrices, they provide four outcomes:

• True positive (TP): glaucoma patient predicted as glaucoma (top left element),
• False positive (FP): healthy patient predicted as glaucoma (bottom left element),
• True negative (TN): healthy patient predicted as healthy (bottom right element),
• False negative (FN): glaucoma patient predicted as healthy (top right element).

In order to assess the performances of these three trees, the following parameters have
been computed from the confusion matrix:

• Accuracy:

ACC =
TP + TN

TP + TN + FP + FN
. (12)

• Sensitivity (recall or true positive rate, TPR):

TPR =
TP

TP + FN
. (13)

• Specificity (true negative rate, TNR):

TNR =
TN

TN + FP
. (14)

• Precision (positive predictive value, PPV):

PPV =
TP

TP + FP
. (15)

Table 5. Classification loss for observations not used for training (wh = 1, wg = 1).

ξ δ |δ| ∆ |∆| ∆̄ |∆̄| ¯̄∆ | ¯̄∆|
15 0.2174 0.2222 0.1643 0.1498 0.1643 0.1932 0.1256 0.1546
10 0.1932 0.1932 0.1594 0.1498 0.1691 0.1739 0.1256 0.1498
5 0.1787 0.1643 0.1498 0.1546 0.1546 0.1449 0.1159 0.1449
3 0.1643 0.1401 0.1643 0.1208 0.1498 0.1304 0.1304 0.1208

As can be seen in Table 6, these decision trees provide high accuracy (all of them
higher than 87%), high specificity (higher than 95%) and high precision (higher than 79%).
In order to improve the results, i.e., increase the sensitivity while keeping high values for
the remaining parameters, the weight of the inputs corresponding to the class glaucoma
has been increased from 1.0 to 1.5. Table 7 contains the classification loss values of the new
models considering this weight in the glaucoma input observations.
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(a)

(b)

(c)

Figure 5. Decision trees and confusion matrices of the best results of Table 5. (a) Decision tree (left)
and confusion matrix (right) for the metric ¯̄∆, using wh = 1, wg = 1 and maximum number of splits
ξ = 5. (b) Decision tree (left) and confusion matrix (right) for the metric |∆|, using wh = 1, wg = 1
and maximum number of splits ξ = 3. (c) Decision tree (left) and confusion matrix (right) for the
metric | ¯̄∆|, using wh = 1, wg = 1 and maximum number of splits ξ = 3.

Table 6. Performances of the best classification trees (wh = 1, wg = 1).

Tree Parameters Accuracy Sensitivity Specificity Precision
¯̄∆, ξ = 5 0.8840 0.6595 0.9500 0.7948
|∆|, ξ = 3 0.8792 0.6170 0.9562 0.8055
| ¯̄∆|, ξ = 3 0.8792 0.5957 0.9625 0.8235
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Table 7. Classification loss for observations not used for training (wh = 1, wg = 1.5).

ξ δ |δ| ∆ |∆| ∆̄ |∆̄| ¯̄∆ | ¯̄∆|
15 0.2386 0.2516 0.1692 0.1844 0.2082 0.2234 0.1931 0.1909
10 0.2343 0.2408 0.1692 0.1844 0.2082 0.2148 0.1844 0.1866
5 0.2169 0.2082 0.1432 0.1996 0.1931 0.2104 0.1584 0.1822
3 0.1822 0.1497 0.1670 0.1432 0.1735 0.1627 0.1584 0.1562

Based on the results of classification loss gathered in Table 7, the model which offers
the best performance with the minimum number of splits is |∆| with ξ = 3. Figure 6
shows the resulting model and its corresponding confusion matrix. This classification tree
provides the confusion matrix whose parameters are collected in Table 8.

Figure 6. Decision tree and confusion matrix for metric |∆|, using wh = 1, wg = 1.5 and ξ = 3.

Table 8. Performance of the best classification tree (wh = 1, wg = 1.5).

Tree Parameters Accuracy Sensitivity Specificity Precision

|∆|, ξ = 3 0.8792 0.6595 0.9437 0.7750

Finally, in order to further increase the number of true glaucoma patients detected, i.e.,
the sensitivity, and considering that the asymmetry metric |∆| offers the lowest classification
loss and taking into account that the asymmetry values range from 0 to 1 (since this measure
is normalized by the sum of the RNFL thickness of each eye in the corresponding sector), the
asymmetry metric |∆|0.5 is proposed. The nonlinear operation of applying the square root
to the non-negative real values provided by the metric |∆| decompresses the distribution
of the values corresponding to healthy and glaucoma patients. This process of encoding
with this decompressive power-law nonlinearity is called gamma compression [40]. As can
be seen in Table 9, which gathers the statistical parameters of the metric |∆|0.5, the mean
values for healthy and glaucoma patients have increased in all sectors. In addition, the
distances between the mean values for the subsets of healthy and glaucoma patients have
further increased, compared to the values provided by |∆|. This effect can be also observed
in Figure 7, where the notched box plots of each subset are further apart. The resulting
decision tree using |∆|0.5 and the corresponding confusion matrixes are shown in Figure 8.
The parameters of accuracy, sensitivity, specificity and precision are gathered in Table 10.
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Table 9. Statistical characterization of the asymmetry metric |∆S|0.5 proposed for RNFL thickness.
Mean values, standard deviations and p-values of this metric for the two subsets of healthy and
glaucoma patients.

Sector
|∆S|0.5

Healthy Glaucoma p-Value

TS 0.1960± 0.0931 0.3908± 0.1741 4.2798× 10−9

T 0.1989± 0.0929 0.3358± 0.1856 5.9084× 10−5

TI 0.1870± 0.0813 0.4393± 0.2183 5.6436× 10−9

NS 0.2373± 0.1019 0.3813± 0.1739 5.4446× 10−5

N 0.2332± 0.1145 0.3359± 0.1623 3.5263× 10−4

NI 0.2190± 0.1016 0.3842± 0.1759 3.5045× 10−7

G 0.1254± 0.0758 0.3469± 0.1515 2.4453× 10−12

Figure 7. Notched box plots of the proposed RNFL thickness asymmetry metric |∆S|0.5 for the healthy
(h) and glaucoma (g) subsets of patients, depicted for each eye sector (TS, T, TI, NS, N and NI) and
for the overall global thickness value (G).

Figure 8. Decision tree and confusion matrix for metric |∆|0.5, using wh = 1, wg = 1.5 and ξ = 3.

Table 10. Performance of the best classification tree (wh = 1, wg = 1.5).

Tree Parameters Accuracy Sensitivity Specificity Precision

|∆|0.5, ξ = 3 0.8792 0.7021 0.9312 0.7500

4. Discussion

This article has delved into the hypothesis that the asymmetry between the two eyes
can be used as an indicator of glaucoma. For this purpose, new asymmetry metrics have
been defined for the thickness of the RNFL obtained from OCTs of both eyes of the same
patient. In this work, the mean thickness of each sector of the RNFL was provided by
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the segmentation of Spectralis; however, segmentation methods such as those described
in [30,41] will be used in the future to address the relationship of the RNFL thickness at
each angle of the B-scan in the diagnosis of glaucoma.

Through a statistical analysis of the RNFL thickness values, the asymmetry metrics that
provide the greatest distinction between the values of the subset of healthy and glaucoma
patients have been chosen. Using these metrics, supervised machine learning models have
been designed—decision trees. The resulting models are classifiers that partitioning the
feature space of the asymmetry values in the sectors of the RNFL and building binary
decision trees recursively can create meaningful outputs that predict being healthy or
suffering from glaucoma.

The proposed decision trees are simple but effective models which provide a binary
classification decision (healthy or glaucoma) by splitting branching nodes based on the
input asymmetry features. Their simplicity or reduced complexity is one of their main
advantages. They allow for rapid classification of new observations, since it is much sim-
pler to evaluate just one or two logical conditions than to compute scores using complex
nonlinear equations for each group. For example, in [42] complex machine learning classi-
fiers (conditional inference trees, logistic model tree, C5.0 decision tree, random forest and
extreme gradient boosting XGBoost) use OCT parameters to diagnose glaucoma, achieving
slightly better performances (average accuracy 0.8818, average sensitivity 0.9166, average
specificity 0.8507 and average area under the curve 0.9459) than decision trees. However,
these models can be seen as black boxes which produce results based solely on the input
data using an algorithm, which prevents clinicians from understanding how variables are
being combined to make such predictions. On the contrary, decision trees proposed in this
paper allow one to study and analyze the importance of the input asymmetry features, and
ophthalmologists may obtain clinical insight from the explanations. In addition, the visual
diagram of a decision tree provides a simple explanation for the reason for classifying a
patient as healthy or glaucomic. In daily clinical practice it is much easier to explain if–then
statements than complex nonlinear equations.

Another advantage of decision trees is their implicit feature selection, since the top
few nodes on which the tree is split are the most important variables within the set. In all
the trees designed, the characteristic considered in the root is the asymmetry in the global
(G) thickness of the RNFL, followed by the asymmetry in the TI sector.

The decision trees have some limitations, such as their tendency to overfit when very
complex, in which case they generally have low bias. In this work, this drawback has been
overcome by restricting the maximum number of splits. The best trees proposed for the
diagnosis of glaucoma have, at most, up to three divisions without degrading the screening
performance. Experimentally, it has been found that three partitions suppose an adequate
trade-off between simplicity and performance, allowing, if necessary, for the possibility of
being applied by hand, without the support of a computer.

Another limitation of decision trees is that they can be unstable because small varia-
tions in the input data can generate a completely different tree. This situation is also solved
by limiting the maximum number of splits, which improves the ability of the model to
generalize to new input data. In addition, as future work, the size of the dataset will be
increased (both healthy and patients with glaucoma, keeping the balance between classes)
allowing us to check the performance of the designed trees.

One more future line of work is the analysis of the performances of complex machine
learning models made to estimate the upper bound of the classification results that can be
obtained using the proposed database and to study the differences between the results of
the proposed decision trees and these complex models, even though they cannot be easily
implemented by ophthalmologists in daily clinical practice.

In conclusion, decision tree models are easy to understand and implement (even
by hand if necessary), which gives them a strong advantage when compared to other
analytical models. The results obtained in this paper confirm that the proposed machine
learning classifier, the decision tree, offers satisfactory performance and a high capacity
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for generalization, providing a simple model for glaucoma screening which can be used in
daily clinical practice.
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